

The Proportional Land Dimensioning Concept

Rainer Taube
TAUBE ELECTRONIC GmbH

Content

Current Calculation Concept

Risks

Terminal Types

The Proportional Concept

The FED Verification Project

Why do we need a new Calculation Concept for SMT-Landpattern?

Previously

IPC-782

Publication 03/87
Rev. A 08/93
AM 1 10/96
AM 2 04/99

Tolerances were added F-Tol = 0.2mm P-Tol = 0.2mm

Solder joint strength is greatly determined by solder volume.

The more solder the more reliable Solder Joint

2010/02/09 00:13:4

No. 0 default H-Ansicht 1600.000 μ m Loesen 1.000 μ m

Current IEC

IEC-61188-5-xx

Complies mostly with IPC-782A inclusive of AM 1 and AM 2

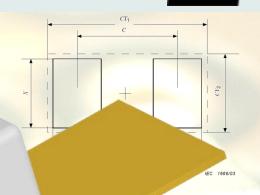
Publication 2002 no Revision till now

Stability Date 2017

Implementation of 3-tier System Maximum - Median - Minimum

Assumption: The more solder the more reliable solder joint

2010/02/09 00:13:4


No. 0 default H-Ansicht 1600.000 μ m Loesen 1.000 μ m

IEC Package I0402 = M1005

Level 1 Maximum Land Size

Dimensions in millimetres

	Pattern identifier	Component identifier	Z	G	X	Y	С	CY ₁	CY ₂
G	402 2040M	1005	2,55	0,5	0,85	1,05	1,55	4,0	2,0
	2041M	1608	3,25	0,5	1,25	1,4	1,9	5,0	
	2042M	2012	3,65	0,55	1,7	1,55	2,1	5.0	
	2043M	3216	4,85	1,5	2,05	1,7	3,2		
	2044M	3225	4,85	1,5	2,95	1,7			
	2045M	4530	6,2	2,6	3,65	1,8			
	2046M	5750	7,45	3,65	5,55	1,5			
			•						

Level 2 Nominal Land Size

	Pattern identifier	Component identifier	Z	G	X			and the second	CY ₂
040		1005	2,05	0,5	0.7				1,3
	2041N	1608	2,65	0,5				1,2	1,6
	2042N	2012	3,05					3,6	2,0
	2043N	3216	4,3	1,5		10	2,95	4,8	2,4
	2044N	3225	4,3	1,55		,4	2,95	4,8	3,3
	2045N	4530	5,7	2,65	3,5	1,55	4,2	6,2	4,0
	2046N	5750	6,95	3,7	5,45	1,65	5,35	7,5	6,0

2010/07/26 13:36:4

Objektiv MX(G)-5040Z: Normal: x100 H-Ansicht 3.050 mm Loesen 0.002 mm

Current IPC

IPC-7351

Further Development of IPC-782 Implementation of Density Level

Publication 02/05

Rev. A 02/07

Rev. B 06/10

Rev. C in progress

Combination with PCB Libraries Landpattern Calculator

Reduced Tolerances F-Tol = 0.1mm P-Tol = 0.05mm

2010/02/09 00:13:4

No. 0 default H-Ansicht 1600.000 μ n Loesen 1.000 μ m

IPC Package I0402 = M1005

Table 3-6 Rectangular or Square-End Components (Capacitors and Resistors) Smaller than 1608 (0603) (unit: mm)

Lead Part	Maximum (Most) Density Level A	Median (Nominal) Density Level B	Minimum (Least) Density Level C			
Toe (J ₁)	0.30	0.20	0.10			
Heel (J _n)	0.00	0.00	0.00			
Side (J _s)	0.05	0.00	-0.05			
Round-off factor	Round off to the nearest two place decimal, i.e., 1.00, 1.02, 1.04, 1.06					
Courtyardexcess	0.2	0.15	0.1			

Chip Resistor **RESC** Construction and land pattern development are described in 8.1

Chip Capacitor **CAPC** Construction and land pattern development are described in 8.2

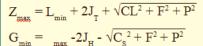

Chip Inductor INDC Construction and land pattern development are described in 8.3

Table shows minimum dimensions of density level

Effective dimensions have to be calculated with IPC
7351 calculator

2010/07/26 13:36:40

Objektiv MX(G)-5040Z: Normal: x10 H-Ansicht 3.050 mm

$$X_{max} = W_{min} + 2J_{s} + \sqrt{C^{2} + F^{2} + P^{2}}$$

Where:

Z is the overall length of land pattern

G is the distance between lands of the pattern

X is the width of land pattern

L is the overall length of component

S is the distance between component terminations

W is the width of the lead or termination

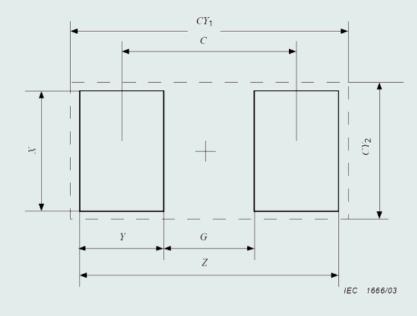
J is the desired dimension of solder fillet or land protrusion:

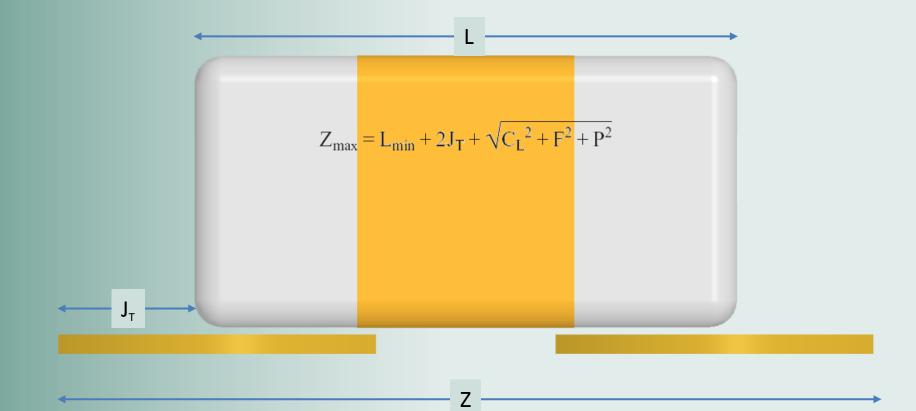
 J_{τ} is the solder fillet or land protrusion at toe

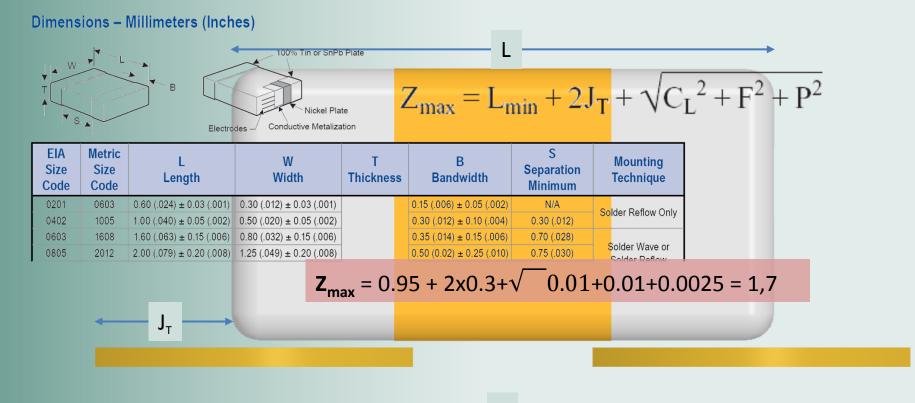
J₂ is the solder fillet or land protrusion at heel

 J_s is the solder fillet or land protrusion at side

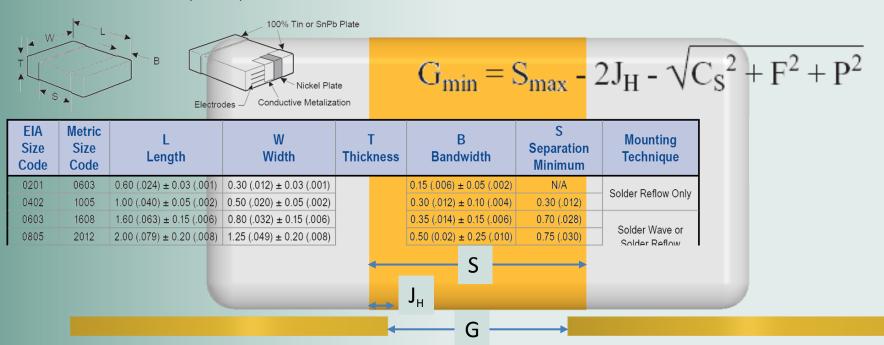
C is the component tolerances:

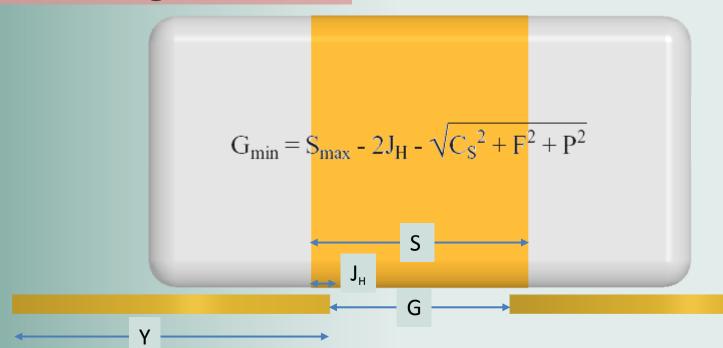

C, is the tolerance on component length

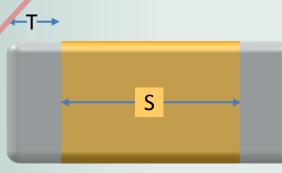

Cs is the tolerance on distance between component terminations

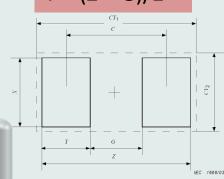

C,, is the tolerance on the lead width

F is the printed board fabrication (land pattern geometric) tolerances

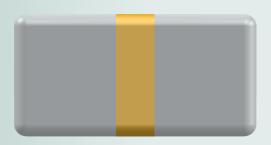

P is the part placement tolerance (placement equipment accuracy)






$$S_{\text{max}}/S_{\text{tol}} = S_{\text{max}} - 2J_{\text{H}} - \sqrt{C_{\text{S}}^2 + F^2 + P^2}$$

Y = (Z - G)/2


1. Method of Tolerance Calculation S (C_s)

$$S_{max} = L_{max} - 2T_{min}$$

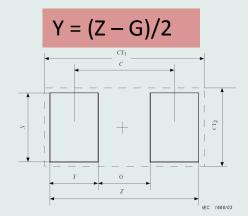
 $S_{max} = 1.05 - 2 \times 0.2 = 0.65$

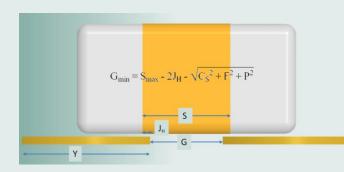
$$S_{min} = L_{min} - 2T_{max}$$

 $S_{min} = 0.95 - 2x \ 0.4 = 0.15$

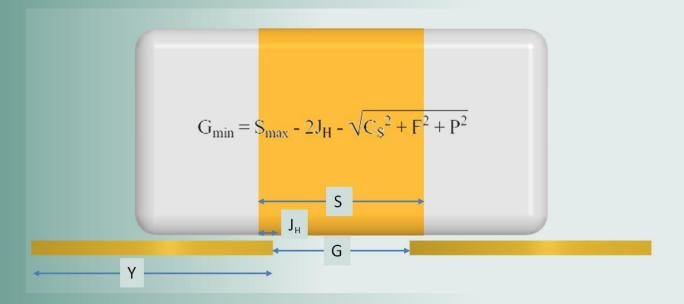
$$C_s = S_{max} - S_{min} = 0.65 - 0.15 = 0.5$$
 (S-Tolerance)

$$G_{min} = S_{max} - 2J_H - \sqrt{C_S^2 + F^2 + P^2}$$

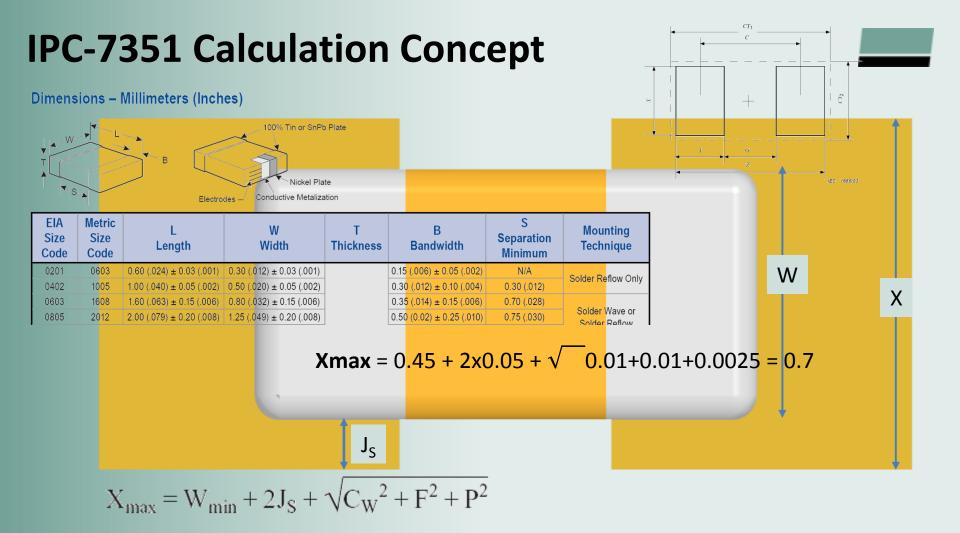

2. Method of Tolerance Calculation S (C_s)


$$C_{s(RMS)} = \sqrt{(L_{tol})^2 + 2(T_{tol})^2} = \sqrt{(0.1^2 + 2x0.2^2 = 0.3)}$$

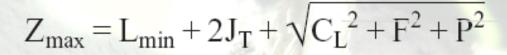
$$C_{s(Diff)} = C_s - C_{s(RMS)} = 0.5 - 0.3 = 0.2$$


$$S_{\text{max (New)}} = C_{\text{smax}} - C_{\text{s(Diff)}}/2 = 0.65 - 0.1 = 0.55$$

$$S_{min (New)} = C_{smin} + C_{s(Diff)}/2 = 0.15 + 0.1 = 0.25$$



The smaller G the longer Y



$$\mathbf{G} = 0.55 - 2 \times 0 - \sqrt{0.09 + 0.01 + 0.0025} = 0.55 - 0 - 0.32 = 0.23$$

$$Y (0402) = (Z - G)/2 = (1.7 - 0.23)/2 = 0.735$$

IPC-7351 Maximum

Component depending: L_{min} und C_{L}

Process Constants: F und P

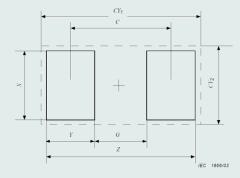
Density Constant: J_T

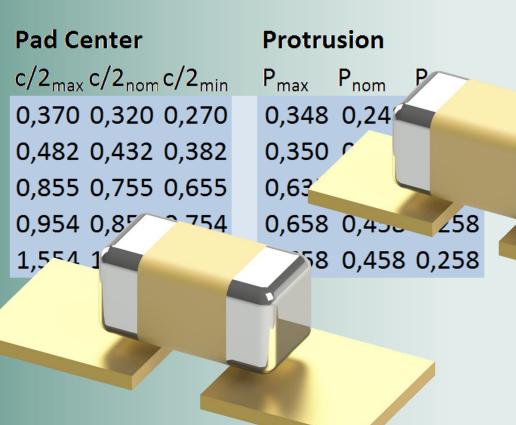
2010/03/16 13:51:32

Objektiv MX(G)-5040Z : Normal : x10 H-Ansicht 3050.000 μ m

1000 µm

IPC-7351 Land Calculation Chip-Components

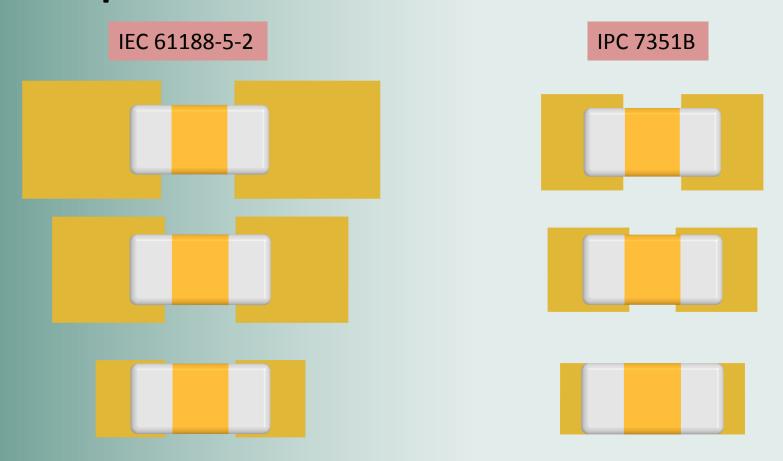



Bauform	Bauteilmaße						
	Länge (L) Ltol	Breite (W)	Wtol	Anschluss	Ttol	Stol	Srms Sdiff
0201	0,60 0,03	0,30	0,03	0,15	0,05	0,26	0,15 0,11
0402	1,00 0,05	0,50	0,05	0,30	0,10	0,50	0,30 0,20
0603	1,60 0,15	0,80	0,15	0,35	0,15	0,90	0,52 0,38
0805	2,00 0,20	1,25	0,20	0,50	0,25	1,40	0,81 0,59
1206	3,20 0,20	1,60	0,20	0,50	0,25	1,40	0,81 0,59

Toleranzen							
Baute	eil	Fertig	Fertigung				
CL	WL	TL	F	Р			
0,06	0,06	0,10	0,10	0,05			
0,10	0,10	0,20	0,10	0,05			
0,30	0,30	0,30	0,10	0,05			
0,40	0,40	0,50	0,10	0,05			
0,40	0,40	0,50	0,10	0,05			

IPC-7351B Landpattern

Zmost Znom Zmin	G	Ymax Ynom Ymin	Xmax Xnom Xmin
1,297 1,097 0,897	0,182	0,558 0,458 0,358	0,497 0,397 0,297
1,700 1,500 1,300	0,230	0,735 0,635 0,535	0,700 0,600 0,500
2,870 2,470 2,070	0,549	1,160 0,960 0,760	1,070 0,970 0,870
3,315 2,915 2,515	0,499	1,408 1,208 1,008	1,565 1,465 1,365
4,515 4,115 3,715	1,699	1,408 1,208 1,008	1,915 1,815 1,715

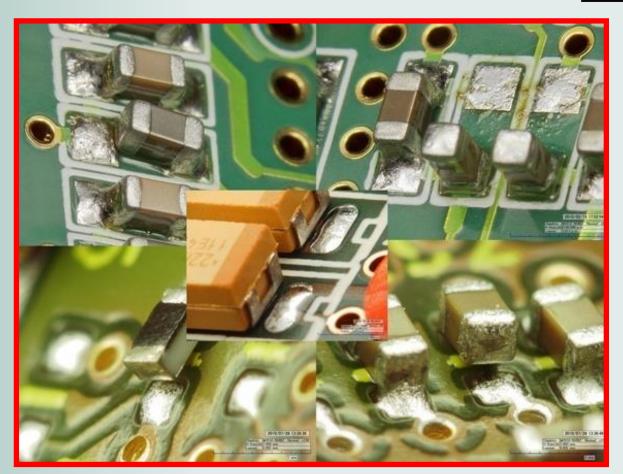


Anschlus

$P_{max}\%T_{nom}$	nom	
232	166	
117	83	50
181	124	67
	92	52
	92	52

Comparison IEC ⇔ IPC

Consequences


Twisting

Shifting

Tombstoning

Open Solder Joints

Trailers

Optional in IPC-7351B

"Individual tolerances for fabrication ("F") and component placement equipment accuracy ("P") are assumed to be as given in the IPC-7351 land pattern libraries."

"These numbers may be modified based on user equipment capability or fabrication criteria. For example, many printed board fabricators will compensate for etch factors and increase or "swell" land features. In such instances, the combination of etch factor compensation by the printed board fabricator and the IPC-7351 default "F" tolerance results in what can be described as "double etch compensation" where the land size is increased beyond expectation. In these instances, the fabrication tolerance in the "Calculator Settings" menu of the IPC-7351 LP Calculator should be set to 0.0 mm."

Constant land increase by F & P

With F = 0.050 mm and P = 0.025 mm the resulting increase is of land in each dimension is 0.056 mm.


This is an absolute amount which leads to a significant expansion of land area for small components (0402, 0201 and less).

Further is important, whether the component dimensions are used with nominal or min/max. values.

The New Proportional Land Dimensioning Concept

Basic Idea

Two Terminal Classes

Facing & vertical wettable areas

Facing wettable areas

Terminal Type 1

Facing flat wettable areas

1:1 optimized stress distribution in solder joint – higher reliability

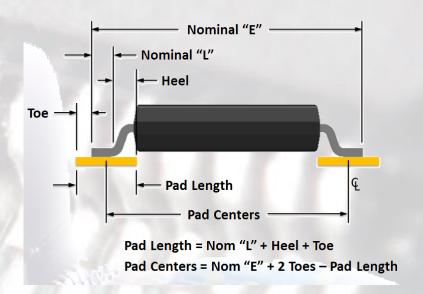
J-STD-001		Туре	Land Size
7.5.3	_	Bottom Only Chip	1:1
7.5.12	_	Tall Profile Bottom Only	1:1
7.5.14		BGA	1:1
7.5.15		ВТС	1:1

No protrusion required

Terminal Type 2

Flat facing and vertical wettable areas

Protrusion required


J-STD-001	Тур	Protrusion
7.5.4	Rectangular or Square End Chip	% Terminal Height
7.5.5	Cylindrical End Cap	% Terminal Diameter
7.5.6	Castellated	% Terminal Height
7.5.7	Gull Wing	% Leadframe Thickness
7.5.9	J-Leads	% Leadframe Thickness
7.5.11	Flat Lug Leads	% Leadframe Thickness
7.5.13	L-Inward	% Terminal Height

Solder Joint Requirements

Solder Joint Requirements according to J-STD-001 and IPC-A-610							
J-STD-001	Dim.	Description	Minimum Fillet Hight Requirement				
Termination Type			Class 1	Class 2	Class 3		
7.5.3	F	Bottom Only Chip	Good wetting	Good wetting	Good wetting		
7.5.4	F	Rectangular or Square End Chip	Good wetting on vert	ical surfaces	G+25%H max 0.50 mm		
7.5.5	F	Cylindrical End Cap	Good wetting on vert	ical surfaces	G + 25%W max 1.00 mm		
7.5.6	F	Castellated	Good wetting	G+25%H	G+50%H		
7.5.7	F	Gull Wing - T < = 0.40 mm	Good wetting	G+T	G+T		
7.5.7	F	Gull Wing - T > 0.40 mm	Good wetting	G+50%T	G+T		
7.5.8	F	Round & Flattened Leads	Good wetting	G+50%T	G+T		
7.5.9	F	J-Leads	G+50%T	G+50%T	G+T		
7.5.10	F	I-Leads (Butt I)	0.50 mm	0.50 mm	NA		
7.5.10.1	F	I-Leads Solder Charged	Hole is filled	Hole is filled	Hole is filled		
7.5.11	F	Flat Lug Leads	Good wetting	Good wetting	G+T		
7.5.12	F	Tall Profile Bottom Only	None	None	None		
7.5.13	F	L-inward	Good wetting on vertical surfaces	G+25%H max 0.50 mm	G+25%H max 0.50 mm		
7.5.14	F	BGA	None	None	None		
7.5.15	F	BTC (QFN)	None	None	None		
7.5.16	F	Bottom Thermal Plane	None	None	None		
7.5.17	F	Flattened Post	Good wetting	Good wetting	NA		
7.5.18	F	P-termination	Good wetting	25%H	25%H		

Gullwing Pitch

Pitch	Package Example
1.27mm	SO-08, SO-14, SO-16 etc.
1.00mm	QFP
0.80mm	TQFP-44
0.65mm	TSSOP-16
0.50mm	MSOP-10
0.40mm	TQFP-100

Gullwing Solder Joint

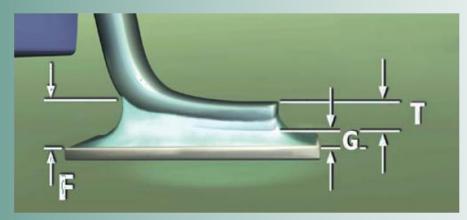


Figure 8-102

Acceptable - Class 3

• Minimum heel fillet height (F) is equal to solder thickness (G) plus lead thickness (T) at connection side.

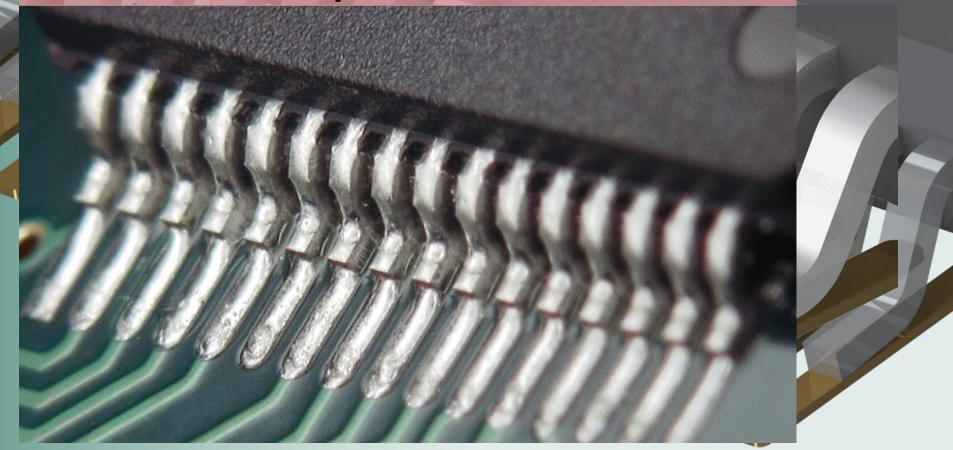
A good heel fillet equals a wetting angle of approximately 45°

Toe of terminal mostly is not wettable, no solder joint requirement

Heel fillet is most important for reliablity

Thus heel protrusion should be more than toe protrusion

IPC-7351 Gullwing Tables


Table 3-2 Flat Ribbon L and Gull-Wing Leads (greater than 0.625 mm pitch) (unit: mm)

	Maximum (Most)	Median (Nominal)	Minimum (Least)
Lead Part	Density	Density	Density
	Level A	Level B	Level C
Toe (J_T)	0.55	0.35	0.15
$\text{Heel } (J_{\text{H}})^1$	0.45	0.35	0.25
Side (J _S)	0.05	0.03	0.01
Round-off factor	Round off to the near	est two place decimal, i.e	e., 1.00, 1.05, 1.10, 1.15
Courtyard excess	0.5	0.25	0 1

Table 3-3 Flat Ribbon L and Gull-Wing Leads (less than or equal to 0.625 mm pitch) (unit: mm)

	Only Difference: Side Protrusion J _s				
Lead Part	Den sity	Density	Den sity		
	Level A	Level B	Lev <mark>el C</mark>		
Toe (J_T)	0.55	0 35	0.15		
$\text{Heel} (J_{\text{H}})^1$	0.45	0.35	0.25		
Side (J _S)	0.01	-0.02	-0.04		
Round-off factor	Round off to the nearest two place decimal, i.e., 1.00, 1.05, 1.10, 1.15				
Courtyard excess	0.5	0.25	0.1		

Example: TQFP-100

The Proportional Concept

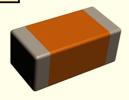
Proportional Land Dimensioning Calculations		Protrusion					
Description	Protrusion	Land Size	Calculation	Toe Limit	Toe	Side *	Heel
Bottom Only Chip	No	1:1	-		opt: 50μm	opt: 50μm	opt: 50μm
Rectangular or Square End Chip	Yes		Termination Height	0.50 mm	40%	10%	10%
Cylindrical End Cap	Yes		Termination Diameter	1.00 mm	60%	0%	5%
Castellated	Yes		Termination Height		50%	10%	10%
Gull Wing - T < = 0.40 mm	Yes		Leadframe Thickness		100%	10%	150%
Gull Wing - T > 0.40 mm	Yes		Leadframe Thickness		100%	10%	150%
Round & Flattened Leads	Yes		Lead Thickness/Diameter		100%	10%	150%
J-Leads	Yes		Leadframe Thickness		150%	10%	150%
I-Leads (Butt I)	Yes		Height Requirement		0.50 mm	0.25 mm	0.50 mm
I-Leads Solder Charged	Yes		Upper Hole Edge		50%	10%	50%
Flat Lug Leads	Yes		Leadframe Thickness		100%	10%	5%
Tall Profile Bottom Only	No	1:1	-		opt: 50μm	opt: 50μm	opt: 50μm
L-inward	Yes		Termination Height	0.50 mm	10%	10%	40%
BGA	No	1:1	-		opt: 50μm	opt: 50μm	opt: 50μm
BTC (QFN)	No	1:1	-		opt: 50μm	opt: 50μm	opt: 50μm
Bottom Thermal Plane	NoYes		Leadframe Thickness		100%	10%	150%
Flattened Post	Yes	_					
P-termination	Yes		Termination Hight		50%	20%	50%

* Alternative to % in most cases 50% of

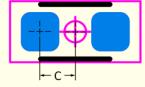
opt: = optional

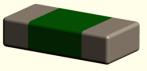
Example Chip-Components

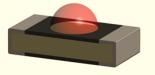
Pac	kage Dimens	ions	Nom. Terminal	Toe (%)	Heel (%)	Side (%)
Length	Width	Height	Length	40	5	5
0,40	0,20	0,25	0,10	0,100	0,013	0,013
0,60	0,30	0,30	0,15	0,120	0,015	0,015
1,00	0,50	0,50	0,30	0,200	0,025	0,025
1,60	0,80	0,50	0,35	0,200	0,025	0,025
2,00	1,25	0,60	0,50	0,240	0,030	0,030
2,50	2,00	0,65	0,50	0,260	0,033	0,033
3,20	1,60	0,70	0,50	0,280	0,035	0,035
3,20	2,50	0,70	0,50	0,280	0,035	0,035
4,50	1,60	0,75	0,50	0,300	0,038	0,038
4,50	3,20	0,80	0,60	0,320	0,040	0,040
5,00	2,50	0,80	0,60	0,320	0,040	0,040
6,40	3,20	0,80	0,60	0,320	0,040	0,040
7,40	5,10	0,80	0,60	0,320	0,040	0,040
	Length 0,40 0,60 1,00 1,60 2,00 2,50 3,20 3,20 4,50 4,50 5,00 6,40	Length Width 0,40 0,20 0,60 0,30 1,00 0,50 1,60 0,80 2,00 1,25 2,50 2,00 3,20 1,60 3,20 2,50 4,50 1,60 4,50 3,20 5,00 2,50 6,40 3,20	0,40 0,20 0,25 0,60 0,30 0,30 1,00 0,50 0,50 1,60 0,80 0,50 2,00 1,25 0,60 2,50 2,00 0,65 3,20 1,60 0,70 3,20 2,50 0,70 4,50 1,60 0,75 4,50 3,20 0,80 5,00 2,50 0,80 6,40 3,20 0,80	Length Width Height Length 0,40 0,20 0,25 0,10 0,60 0,30 0,30 0,15 1,00 0,50 0,50 0,30 1,60 0,80 0,50 0,35 2,00 1,25 0,60 0,50 2,50 2,00 0,65 0,50 3,20 1,60 0,70 0,50 3,20 2,50 0,70 0,50 4,50 1,60 0,75 0,50 4,50 3,20 0,80 0,60 5,00 2,50 0,80 0,60 6,40 3,20 0,80 0,60	Length Width Height Length 40 0,40 0,20 0,25 0,10 0,100 0,60 0,30 0,30 0,15 0,120 1,00 0,50 0,50 0,30 0,200 1,60 0,80 0,50 0,35 0,200 2,00 1,25 0,60 0,50 0,240 2,50 2,00 0,65 0,50 0,260 3,20 1,60 0,70 0,50 0,280 3,20 2,50 0,70 0,50 0,280 4,50 1,60 0,75 0,50 0,300 4,50 3,20 0,80 0,60 0,320 5,00 2,50 0,80 0,60 0,320 6,40 3,20 0,80 0,60 0,320	Length Width Height Length 40 5 0,40 0,20 0,25 0,10 0,100 0,013 0,60 0,30 0,30 0,15 0,120 0,015 1,00 0,50 0,50 0,30 0,200 0,025 1,60 0,80 0,50 0,35 0,200 0,025 2,00 1,25 0,60 0,50 0,240 0,030 2,50 2,00 0,65 0,50 0,260 0,033 3,20 1,60 0,70 0,50 0,280 0,035 3,20 2,50 0,70 0,50 0,280 0,035 4,50 1,60 0,75 0,50 0,300 0,038 4,50 3,20 0,80 0,60 0,320 0,040 5,00 2,50 0,80 0,60 0,320 0,040 6,40 3,20 0,80 0,60 0,320 0,040

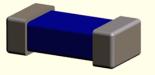

Land (Pad)				
Length	Width	Center		
0,21	0,23	0,194		
0,29	0,33	0,278		
0,53	0,55	0,438		
0,58	0,85	0,713		
0,77	1,31	0,855		
0,79	2,07	1,114		
0,82	1,67	1,473		
0,82	2,57	1,473		
0,84	1,68	2,131		
0,96	3,28	2,090		
0,96	2,58	2,340		
0,96	3,28	3,040		
0,96	5,18	3,540		

All dimensions are in mm

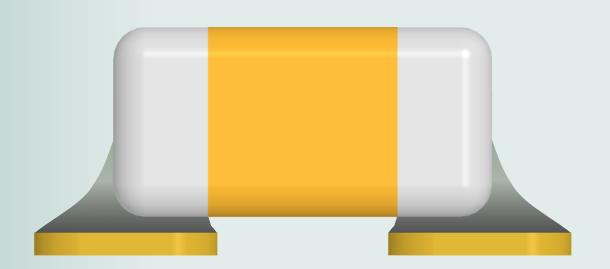

Component Families


Capacitor
Diode
Ferrite Bead
Fuse
Inductor
LED
Resistor
Thermistor


Varistor


Pad Length = Package Tolerance, Nomimal Lead Length + Toe + Heel
Pad Width = Package Tolerance, Nominal Lead Width + Side
Maximum Courtyard Excess = 0.25 mm (user definable)

Advantages


Land dimensions are defined by

Solder Joint Requirements

Terminal Type

Terminal Size

New: Terminal Height

Proportional Gullwing

Proportional SMD Pad Stack										
Gullwing	Package	Package Dimensions		Nominal Terminal		Toe (%TH)	Heel (%TH)	Side (%TH)		
	Example						L			
Pitch		Length	Width €	Height	Length	Width	Height (c)*	100	150	5
1,27	SO-14	8,65	6,00	1,75	0,800	0,50	0,25	0,250	0,375	0,013
0,95	SOT-23-6	2,80	2,90	1,00	0,450	0,40	0,12	0,120	0,180	0,006
0,80	TQFP-44	12,00	12,00	1,60	0,600	0,37	0,15	0,150	0,225	0,008
0,65	TSSOP-16	5,00	6,40	1,20	0,600	0,25	0,20	0,200	0,300	0,010
0,50	MSOP-10	4,90	3,00	1,10	0,550	0,22	0,18	0,180	0,270	0,009
0,40	TQFP-100	14,00	14,00	1,20	0,600	0,18	0,15	0,150	0,225	0,008

Land (Pad)					
Length	Width	Center			
1,425	0,525	2,538			
0,750	0,412	1,145			
0,975	0,385	5,663			
1,100	0,270	2,150			
1,000	0,238	2,130			
0,975	0,195	6,663			

dimensions

All Dimensions are only example 10 MSOP-10 MSOP-7351B IPC-7351B Nominal

MSOP-10 Proportional e dimensions for individual components have to be filled in from datasheet

*Height = Leadframe Thickness

Advantages

Easy scalable

Also for future components

Smoother Assembly

Less Risks

Higher Reliability

Additional Design Space

Disadvantages

No Generic Footprints

FED Proportional Verification Projekt

		Period	Starting Date
1	Creation of Library Parts	3 weeks	16.05.2016
2	Design of Testboard	3 weeks	06.06.2016
3	Testboard Production	3 weeks	27.06.2016
4	Assembly of Testboard	2 weeks	11.07.2016
5	Solder Joint Inspection & Documentation	3 weeks	01.08.2016
6	Präsentation of Results at FED-Conference		15.09.2016

FED - IPC Reference Calculator

Current Sample MSOP-10, pitch 0.5 mm Vishay DG2034DQ-T1-E3

Gull Wing Examples

SO-14 Pitch 1.27 SOT-23 Pitch 0.95 TQFP-44 Pitch 0.80 TSSOP-16 Pitch 0.65 MSOP-10 Pitch 0.50 TVSOP-24 Pitch 0.40

	3216-18A	7343-31D		
Cylindrical				
	MiniMelf	Melf		
Flat Protruded				

Inward L

SOT-563 Castellated TC-164

Fmin

Fmax

Lmin

Lmax

bmin bmax

Enter Data:

Etol =

Ltol

btol =

4.90

4 90

0.00

0.40 0.70

0.30

0.17

0.27

Toe Goal

Heel Goal

Side Goal

Place Rnd

Size Rnd

Fab Tol +/-

Place Tol +/-

0.35

-0.02

0,02

0.01

0.050

0.025

Incremental SMD Reference Calculator

		4	
Calculat		□ <u></u>	
Stol =	0,60		Toe Tol =
Stol (RMS) =	0,42		Zmax =
Sdiff =	0,18		Heel Tol =
Smax =	4,10		Gmin =
Smin =	3,50		Side Tol =
New Smax =	4,01		Yref =
New Smin =	3,59		
	Pla	ce F	Round Factor =
	Si	ze F	Round Factor =

	_
0,11180	
5,71180	
0,43875	
2,87338	
0,15000	
0,28000	
50	

 -	-c-	→
	Ţ	
 	- x	

		N N N	
0		Toe Max =	0,41
2		Toe Min =	0,35
8		Toe Goal	0,35
	Heel Max =		0,57
	Heel Min		0,35
	Heel Goal		0,35
		Side Max =	0,06
		Side Min =	-0,02
		Side Goal	-0,02

F E D Proportional SMD Reference Calculator

Enter Data:		
Enom =	4,90	
Lnom =	0,55	
bnom =	0,22	
cnom =	0,18	
e (pitch) =	0,5	

cnom = Terminal Thickness or Height

Goal Determination		
Toe Goal (%)	100	
Heel Goal (%)	150	
Side Goal (%) 5		

Goals are a percentage of cnom

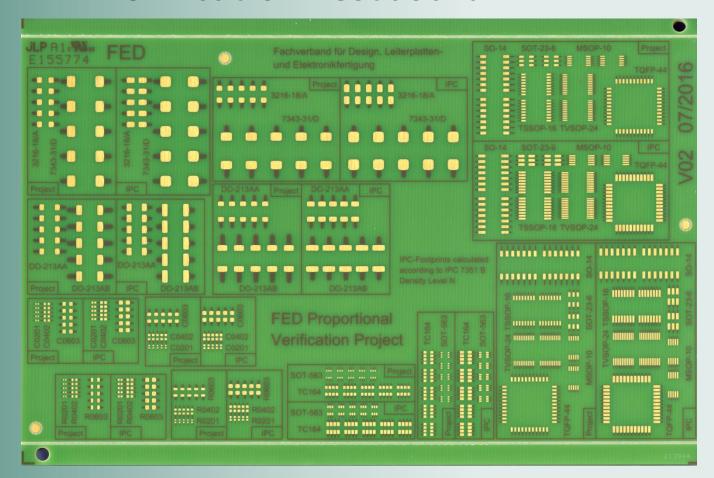
Calculation:		
Z = 5,26000		
G =	3,26000	
Y =	0,23800	

4.26 2.13 1.00 0,25

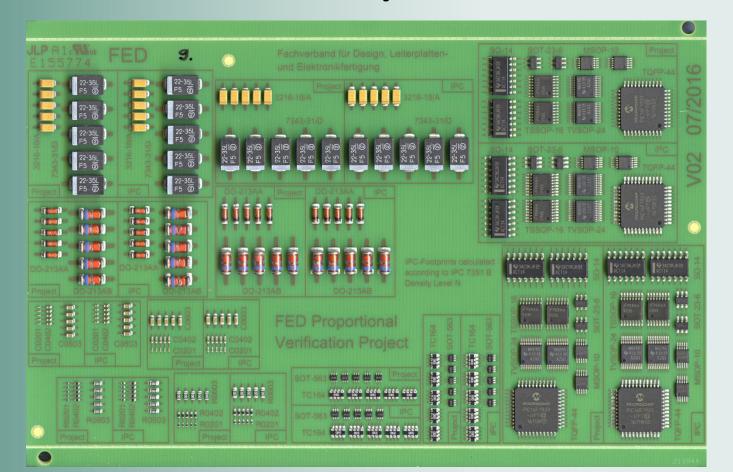
Result:

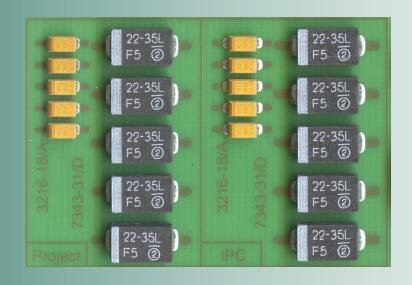
Result:

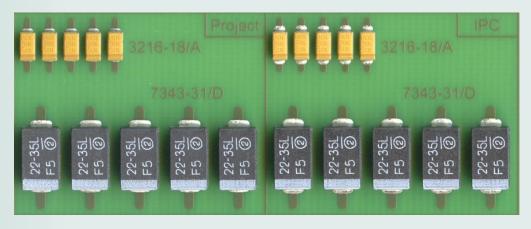
* if Y < pitch/2 Y= pitch/2


Toe Max =	0,180
Toe Min =	0,124
Toe Goal =	0,180
Heel Max =	0,376
Heel Min =	0,157
Heel Goal =	0,270
Side Max =	0,040
Side Min =	-0,035
Side Goal =	0,009

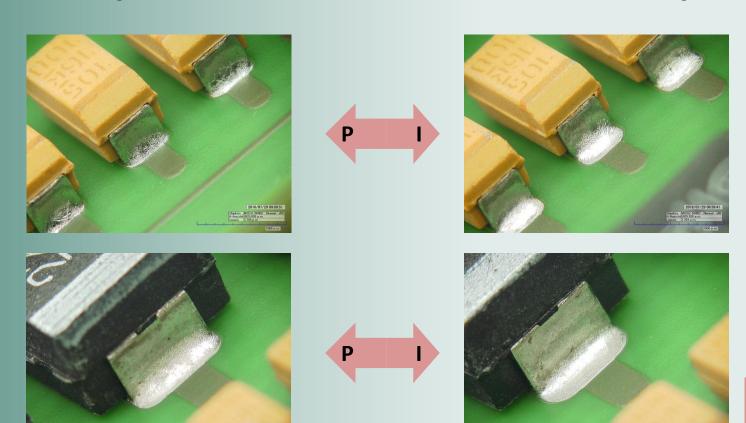
Risk observation

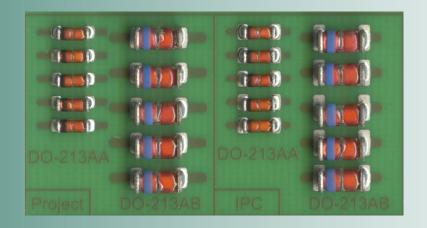

For Evaluation Purposes Only

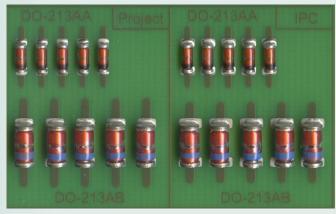

FED Verification Testboard

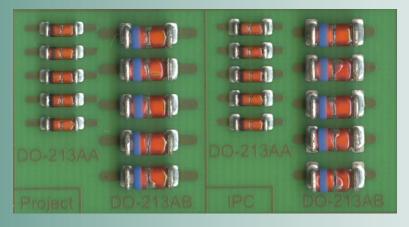


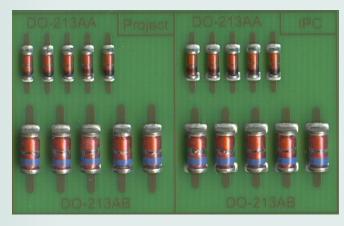
Testboard with Components


Group 1 – Inward L - Tantal A and D

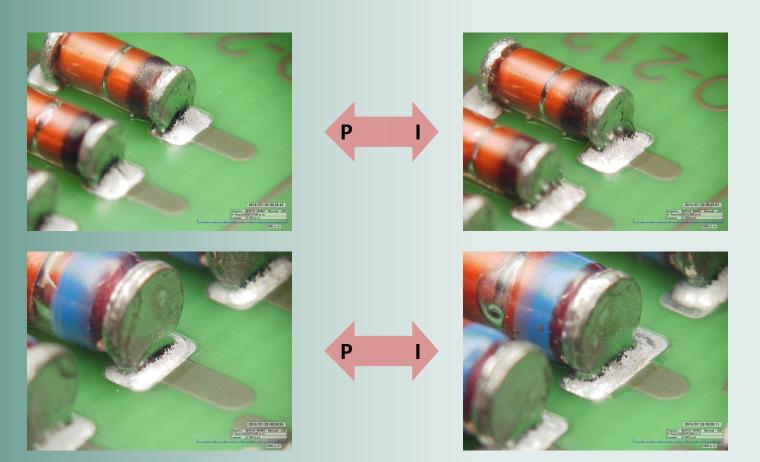

Group 1 – In-L -Tantal A and D solder joints

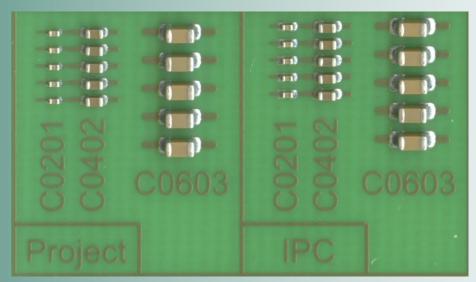


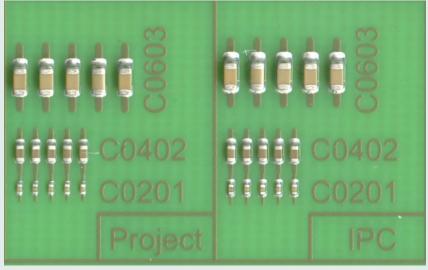


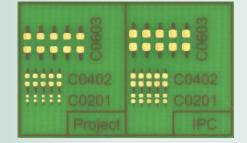

P= Proportional I = IPC-7351

Group 2 – Cylindrical - MiniMelf and Melf

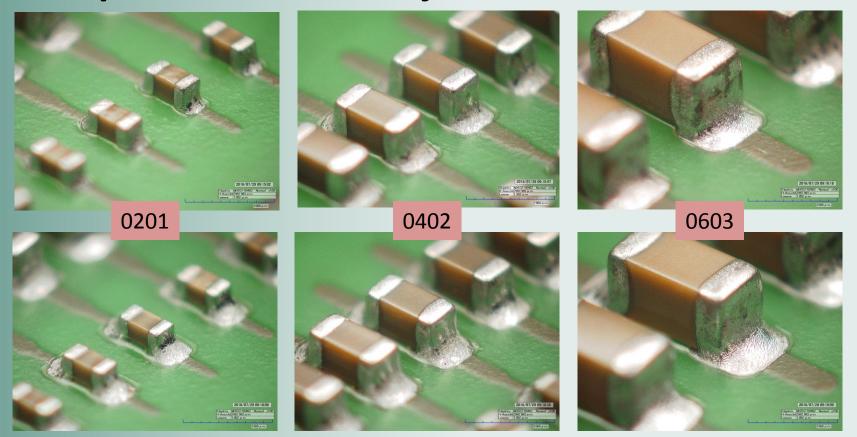


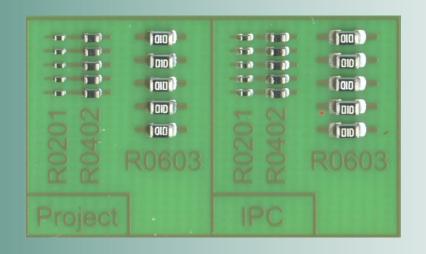


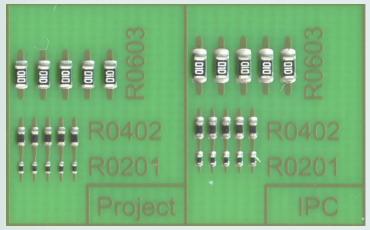

Group 2 – MiniMelf and Melf – solder joints



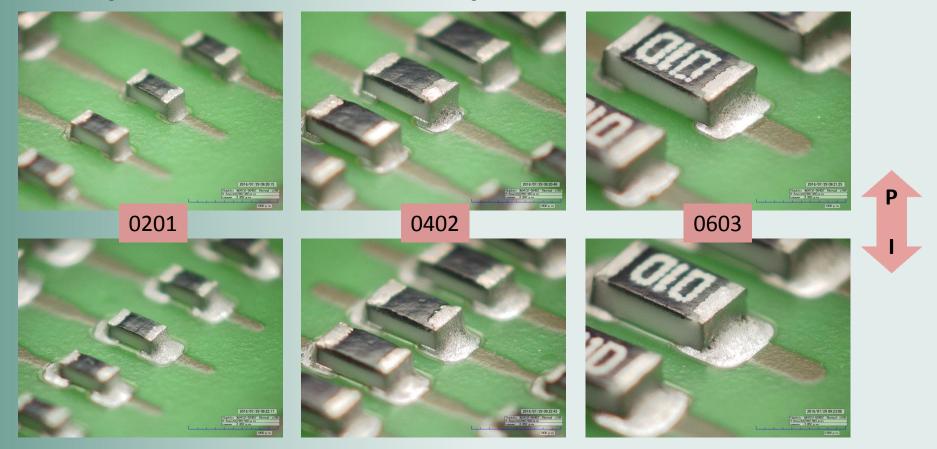
Group 3 – Rectangular/Square MLCC



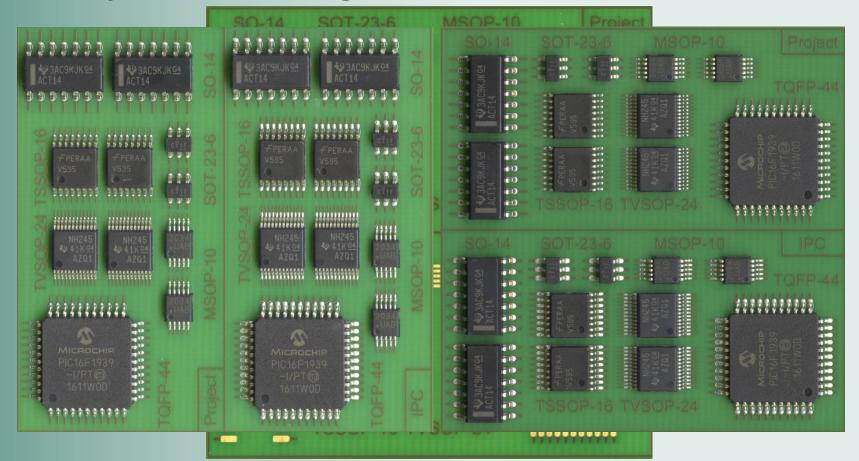


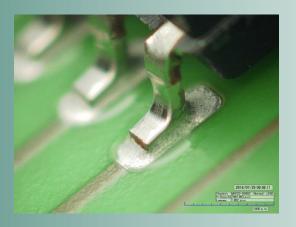


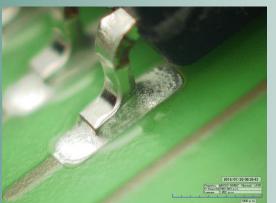
Group 3 – MLCC solder joints



Group 4 – Rectangular/Square Resistor

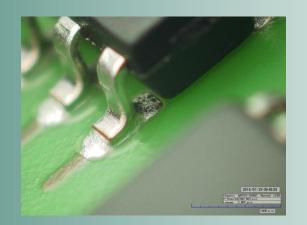


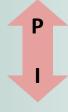

Group 4 – Resistor solder joints

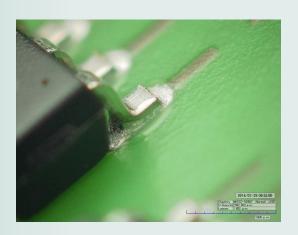


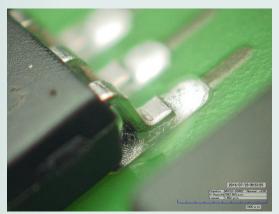
Group 5 – Gullwing

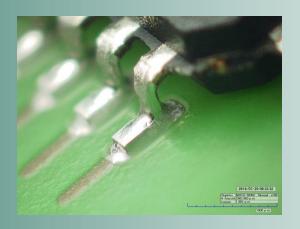
Group 5 – SO-14 solder joints – Pitch 1.27

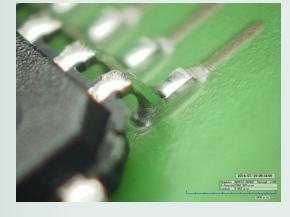




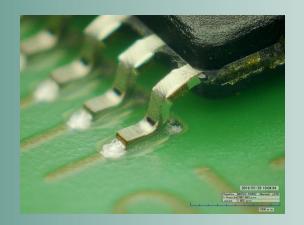


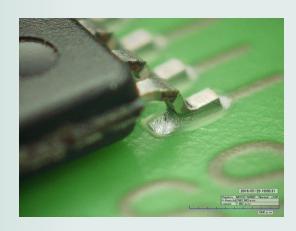

Group 5 – SOT-23-6 solder joints – Pitch 0.95



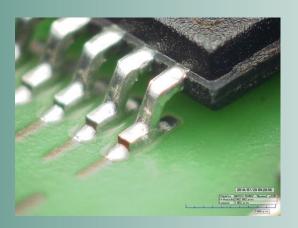


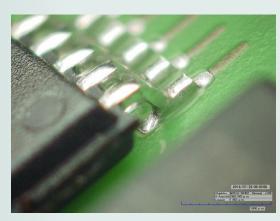
Group 5 – QFT-44 solder joints – Pitch 0.8

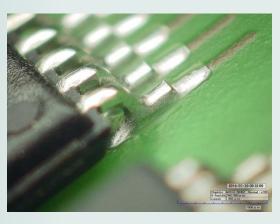


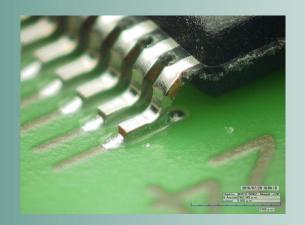


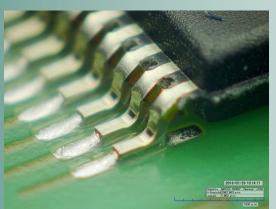
Gruppe 5 – TSSOP-16 gelötet – Pitch 0.65

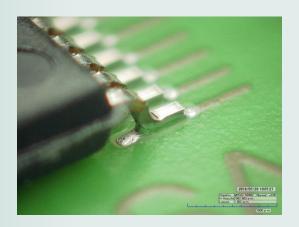


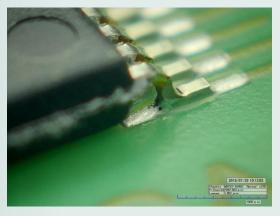


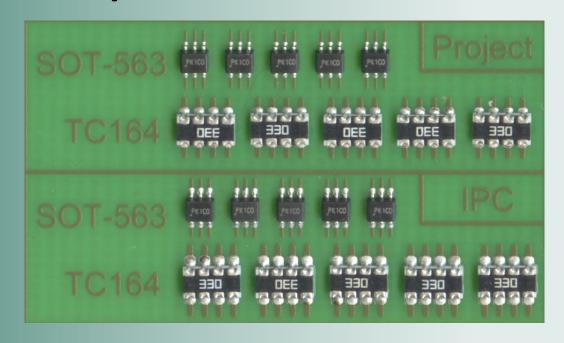

Group 5 – MSOP-10 solder joints – Pitch 0.5

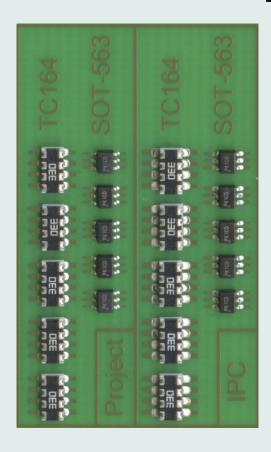


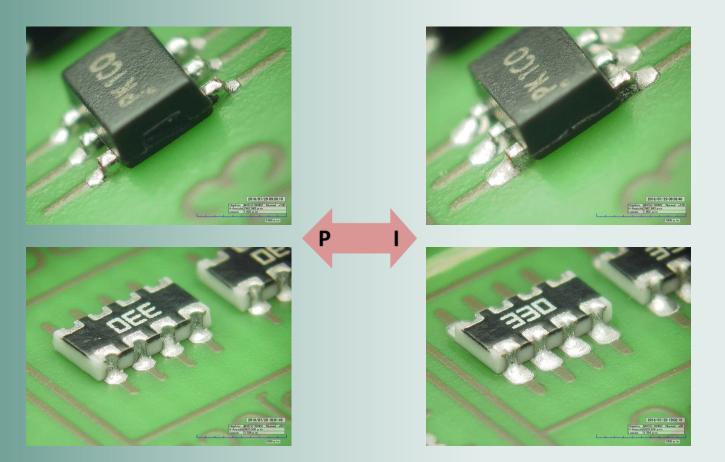




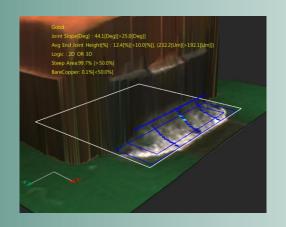

Group 5 – TVSOP-24 solder joints – Pitch 0.4

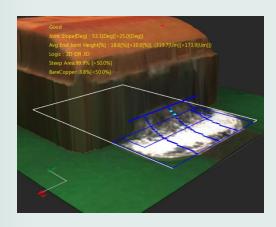


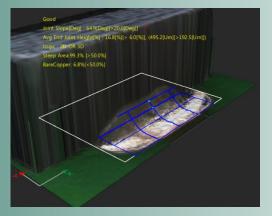




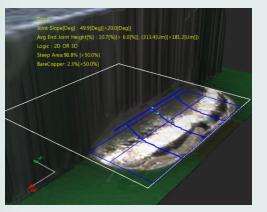
Group 6 – SOT-563 und TC164

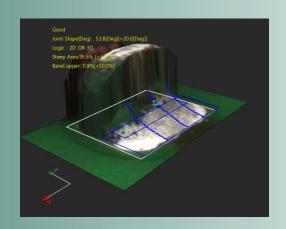


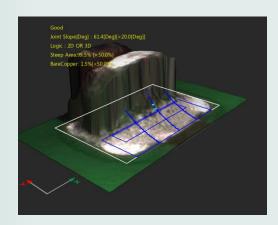

Group 6 – SOT-563 und TC164 solder joints

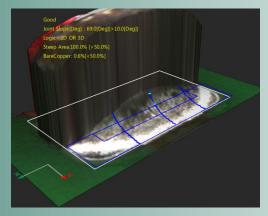


AOI- In-L -Tantal A und D

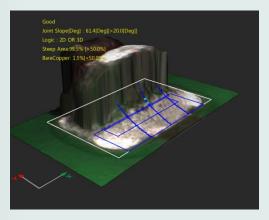


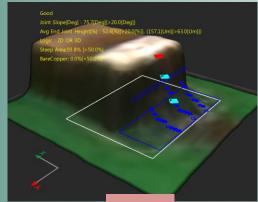


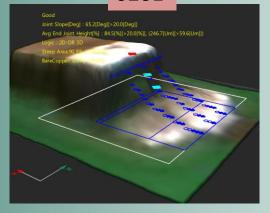


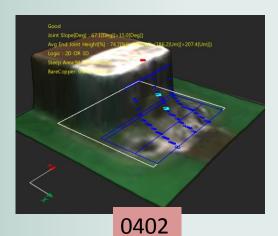

P= Proportional I = IPC-7351

AOI- MiniMelf und Melf

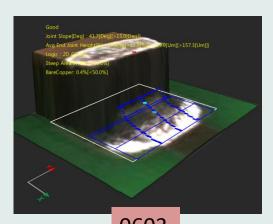


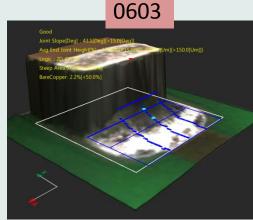


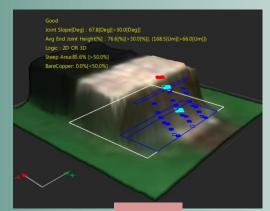


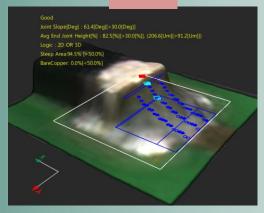


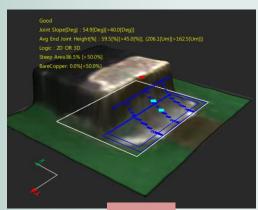
AOI - MLCC

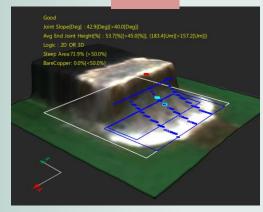


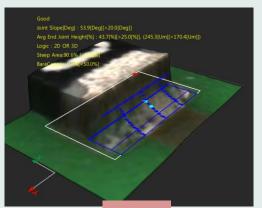

0201

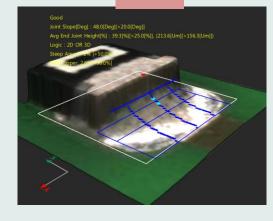

Good
Joint Slope[Deg] : 56 9[Deg][+15 0[Deg]]
Avg End Joint Height[%] - 58.17(5][-32.0](%]], (311.6[Um][>207.5[Um]])
Logic : 20 OR 30
Steep Agg
BareCopper, 0.14

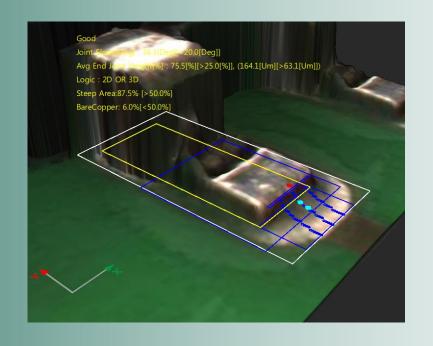


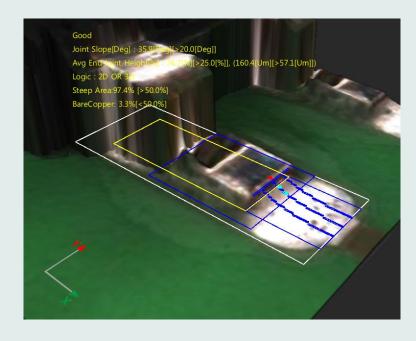


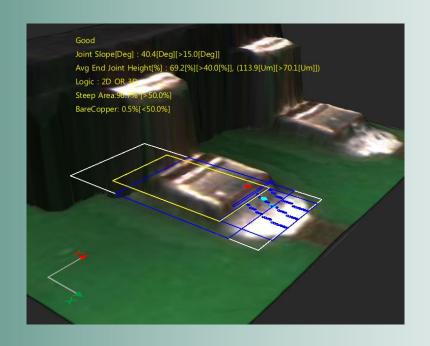

P

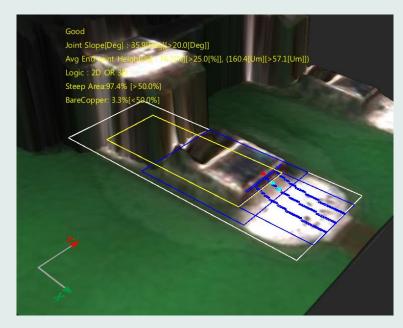

AOI – Resistor

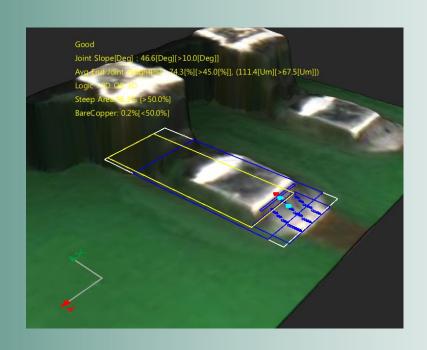


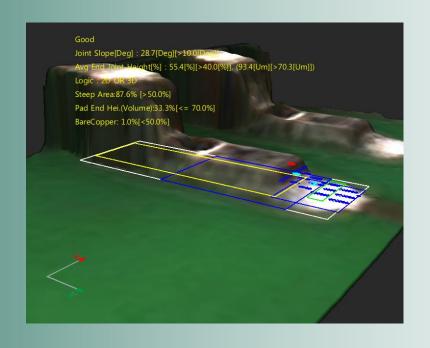


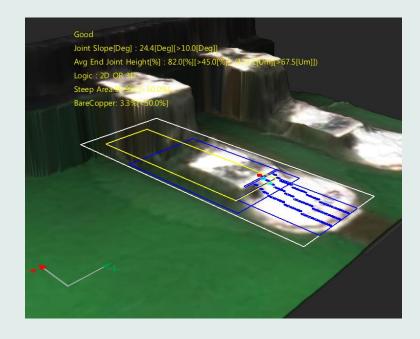


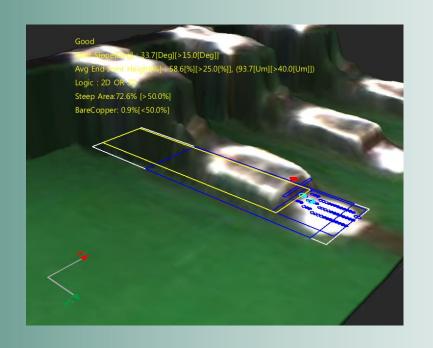

AOI- SO-14 - Pitch 1.27

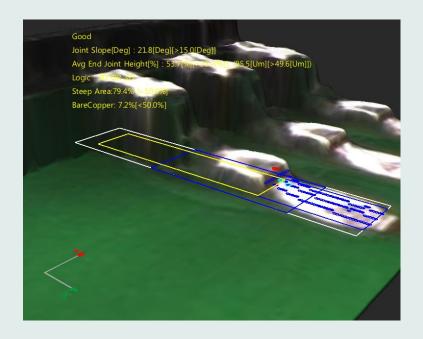


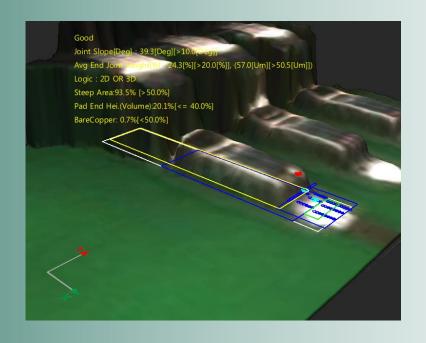

AOI- SOT-23-6 - Pitch 0.95

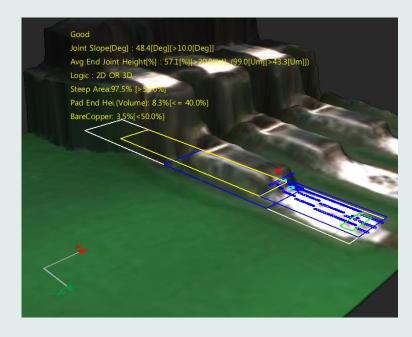


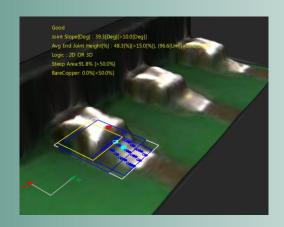

AOI– **QFT-44** – **Pitch 0.8**

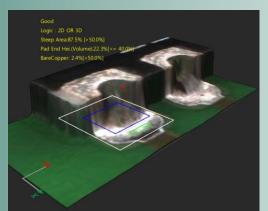

AOI-TSSOP-16 - Pitch 0.65

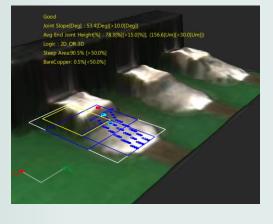


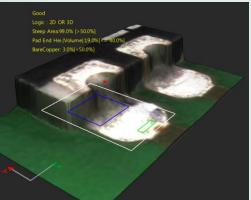

AOI- MSOP-10 - Pitch 0.5




AOI-TVSOP-24 - Pitch 0.4







AOI - SOT-563 und TC164

Investigation results of Marco Huber

3. Feststellung

3. Findings

The results of the investigation concerning placement and solder joints and their wetting behaviour are acceptable and fulfil the requested geometries (with little exceptions Melf)

Based on the total pictures the 4 assemblies of Taube and Prettl are very similar. Also the solder joints do not show significant differences – all components are properly processed.

rungen und Lötunnen Geometrien (mit

Taube sehr ähnlich. auber verarbeitet.

ve in die Praxis, bzw. in eine "FED-Richtlinie" umzusetzen.

4. Recommendations

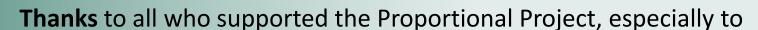
The results under 3. allows to document the accomplished pad definitions und to implement them in practical design or to publish them in a FED-guideline.

any


Marco Huber

Results

Requirements of IPC-A-610 Class 2 & 3 fulfilled


except Cylindrical – additional solder volume required

AOI-results will follow

Do we have to run reliablity test to verify the proportional concept?

Acknoledgement

Wolfgang Kühn for the perfect project plan

Olaf Hollinger, Carl Zeiss AG in Jena for the patience designing the testboard

Sven Nehrdich, Jenaer Leiterplatten for production of bare boards

Stefan Burmeister and his colleagues at Prettl Electronics in Lübeck for assembly and AOI of testboards

Marco Huber, Huber Consulting in Würenlos Switzerland for inspection of solder joints

Erika Reel for continuous support of all projects which serve the FED and his members

Tom Hausherr, PCBLibraries for uncountable discussions about the best landpattern design

© Copyright 2016 Rainer Taube - TAUBE ELECTRONIC GmbH

Reprint or reproduction, even partially or in modified form only allowed with permission of the Author.

Contact

TAUBE ELECTRONIC GmbH

Nostitzstraße 30

D-10965 Berlin

Telefon 030 69 59 25 0

e-mail: r.taube@taube-electronic.de