

TAUBE ELECTRONIC

The Proportional Land Dimensioning Concept

Rainer Taube TAUBE ELECTRONIC GmbH/FED

Content

Why do we need a new Calculation Concept for SMT-Landpattern?

Durantarraha	
Previously	Tolerances were added
IPC-782	F-Tol = 0.2mm P-Tol = 0.2mm
Publication 03	87 Solder joint strength is greatly
Rev. A 08/	'93 determined by solder volume
AM 1 10,	'96 determined by solder volume.
AM 2 04/	'99

The more solder the more reliable Solder Joint

2010/02/09 00:13:45 No. 0 default H-Ansicht 1600.000 μ m Loesen 1.000 μ m

Current IEC

IEC-61188-5-xx

Complies mostly with IPC-782A inclusive of AM 1 and AM 2

Publication 2002 no Revision till now Stability Date 2020

Implementation of 3-tier System Maximum - Median - Minimum

Assumption: The more solder the more reliable solder joint

2010/02/09 00:13:45 No 0 default H-Ansicht 1600.000 μ m Loesen 1.000 μ m

Current IPC	Further Development of IPC-782 Implementation of Density Level				
Publication 02/05 Rev. A 02/07 Rev. B 06/10 Rev. C in progress	Combination with PCB Libraries Landpattern Calculator				

Reduced Tolerances F-Tol = 0.1mm P-Tol = 0.05mm

2010/02/09 00:13:45 No. 0 default H-Ansicht 1600.000 μ m Loesen 1.000 μ m

Comparison IEC ⇔ IPC

IPC 7351B

Consequences

Twisting

Shifting

Tombstoning

Open Solder Joints

Trailers

Reflow versus Wave Solering

No movement possible during soldering Max. landsize not critical Min. landsize critical Nearly unlimited volume of solder

Risk of movement during soldering Max and min landsize critical Limited solder volume

Gullwing Pitch

Pitch	Package Example
1.27mm	SO-08, SO-14, SO-16 etc.
1.00mm	QFP
0.80mm	TQFP-44
0.65mm	TSSOP-16
0.50mm	MSOP-10
0.40mm	TQFP-100

Pad Centers = Nom "E" + 2 Toes - Pad Length

Gullwing Solder Joint

Figure 8-102

Acceptable - Class 3

• Minimum heel fillet height (F) is equal to solder thickness (G) plus lead thickness (T) at connection side.

A good heel fillet equals a wetting angle of approximately 45° Toe of terminal mostly is not wettable, no solder joint requirement Heel fillet is most important for reliablity Thus heel protrusion should be more than toe protrusion

IPC-7351 Gullwing Tables

Table 3-2 Flat Ribbon L and Gull-Wing Leads (greater than 0.625 mm pitch) (unit: mm)								
	Maxir	num	Me	dian	Minimum			
L and Daut	(Mo	(Most)		ninal)	(Lea	ast)		
Leau Fart	Density Level A		Density Level B		Density Level C			
Toe (J_T)	0.5	5	0.	35	0.1	15		
$\operatorname{Heel}(J_{\mathrm{H}})^{1}$	0.4	-5	0.	35	0.2	25		
Side (J _S)	0.0	5	0.	03	0.0	01		
Round-off factor	Round off to	the nearest ty	vo place decii	nal, i.e., 1.00,	1.05, 1.10, 1.	5		
Courtyard excess	0.	5	0.	25	0.	1		

Table 3-3 Flat Ribbon L and Gull-Wing Leads (less than or equal to 0.625 mm pitch) (unit: mm)

	Only Difference: Side Protrusion J_s						
Lead Part	Density		Density		Den	sity	
	Lev	el A	Lev	rel B	Lev	el C	
Toe (J_T)	0.:	55	0	.35	0.	15	
$\text{Heel}(J_{\text{H}})^{1}$	0.4	15	0,	35	0.	25	
Side (J _S)	0.0	01	-0	.02	-0.	04	
Round-off factor	Round off to the nearest two place decimal, i.e., 1.00, 1.05, 1.10, 1.15						
Courtyard excess	0.	5	0	.25	0	.1	

Example: TQFP-100

Constant land increase by F & P

With F = 0.050 mm and P = 0.025 mm the resulting increase is of land in each dimension is 0.056 mm.

This is an absolute amount which leads to a significant expansion of land area for small components (0402, 0201 and less).

Further is important, whether the component dimensions are used with nominal or min/max. values.

The New Proportional Land Dimensioning Concept

Basic Idea

Two Terminal Classes

Facing wettable areas

Facing & vertical wettable areas

Terminal Type 1

Facing flat wettable areas

1:1 optimized stress distribution in solder joint – higher reliability

J-STD-001		Туре	Land Size
7.5.3	_	Bottom Only Chip	1:1
7.5.12		Tall Profile Bottom Only	1:1
7.5.14		BGA	1:1
7.5.15		BTC	1:1

No protrusion required

Flat facing and vertical wettable areas

Protrusion req	uired		
J-STD-001		Тур	Protrusion
7.5.4		Rectangular or Square End Chip	% Terminal Height
7.5.5		Cylindrical End Cap	% Terminal Diameter
7.5.6	L.T.L.	Castellated	% Terminal Height
7.5.7		Gull Wing	% Leadframe Thickness
7.5.9		J-Leads	% Leadframe Thickness
7.5.11		Flat Lug Leads	% Leadframe Thickness
7.5.13		L-Inward	% Terminal Height

Solder Joint Requirements

Solder Joint Requ	ireme	nts according to J-STD-001 and I	PC-A-610					
J-STD-001	Dim.	n. Description Minimum Fillet Hight Requirement						
Termination Type			Class 1	Class 2	Class 3			
7.5.3	F	Bottom Only Chip	Good wetting	Good wetting	Good wetting			
7.5.4	F	Rectangular or Square End Chip	Good wetting on vert	ical surfaces	G+25%H max 0.50 mm			
7.5.5	F	Cylindrical End Cap	Good wetting on vert	ical surfaces	G + 25%W max 1.00 mm			
7.5.6	F	Castellated	Good wetting	G+25%H	G+50%H			
7.5.7	F	Gull Wing - T < = 0.40 mm	Good wetting	G+T	G+T			
7.5.7	F	Gull Wing - T > 0.40 mm	Good wetting	G+50%T	G+T			
7.5.8	F	Round & Flattened Leads	Good wetting	G+50%T	G+T			
7.5.9	F	J-Leads	G+50%T	G+50%T	G+T			
7.5.10	F	I-Leads (Butt I)	0.50 mm	0.50 mm	NA			
7.5.10.1	F	I-Leads Solder Charged	Hole is filled	Hole is filled	Hole is filled			
7.5.11	F	Flat Lug Leads	Good wetting	Good wetting	G+T			
7.5.12	F	Tall Profile Bottom Only	None	None	None			
7.5.13	F	L-inward	Good wetting on vertical surfaces	G+25%H max 0.50 mm	G+25%H max 0.50 mm			
7.5.14	F	BGA	None	None	None			
7.5.15	F	BTC (QFN)	None	None	None			
7.5.16	F	Bottom Thermal Plane	None	None	None			
7.5.17	F	Flattened Post	Good wetting	Good wetting	NA			
7.5.18	F	P-termination	Good wetting	25%H	25%H			

The Proportional Concept

Proportional Land Dimensionin	g Calculatio	ns		Protrusion			
Description	Protrusion	Land Size	Calculation	Toe Limit	Тое	Side *	Heel
Bottom Only Chip	No	1:1	-		opt: 50µm	opt: 50µm	opt: 50µm
Rectangular or Square End Chip	Yes		Termination Height	0.50 mm	40%	10%	10%
Cylindrical End Cap	Yes		Termination Diameter	1.00 mm	60%	0%	5%
Castellated	Yes		Termination Height		50%	10%	10%
Gull Wing - T < = 0.40 mm	Yes		Leadframe Thickness		100%	10%	150%
Gull Wing - T > 0.40 mm	Yes		Leadframe Thickness		100%	10%	150%
Round & Flattened Leads	Yes		Lead Thickness/Diameter		100%	10%	150%
J-Leads	Yes		Leadframe Thickness		150%	10%	150%
I-Leads (Butt I)	Yes		Height Requirement		0.50 mm	0.25 mm	0.50 mm
I-Leads Solder Charged	Yes		Upper Hole Edge		50%	10%	50%
Flat Lug Leads	Yes		Leadframe Thickness		100%	10%	5%
Tall Profile Bottom Only	No	1:1	-		opt: 50µm	opt: 50µm	opt: 50µm
L-inward	Yes		Termination Height	0.50 mm	10%	10%	40%
BGA	No	1:1	-		opt: 50µm	opt: 50µm	opt: 50µm
BTC (QFN)	No	1:1	-		opt: 50µm	opt: 50µm	opt: 50µm
Bottom Thermal Plane	NoYes		Leadframe Thickness		100%	10%	150%
Flattened Post	Yes						
P-termination	Yes		Termination Hight		50%	20%	50%
						* Alternativ	/e to % in
				opt: = optional most cases 50% of			50% of

Land dimensions are defined by

Proportional Gullwing

allowed as an	Dealerse	D	les es Disservei			a maine al Tarrera	and a second sec	T = = (0/T!!)	H = = 1 (0/ T + 1)	Cide (9/TU)		Laural (Daul)	
Uliwing Package		Package Dimensions		N	Nominal Terminal		10e (%1H)	Heel (%1H)	Side (%TH)	Land (Pad)			
Pitch	Example	Length	Width €	Height	Length	Width	Height (c)*	100	150	5	Length	Width	Center
1,27	SO-14	8,65	6,00	1,75	0,800	0,50	0,25	0,250	0,375	0,013	1,425	0,525	2,538
0,95	SOT-23-6	2,80	2,90	1,00	0,450	0,40	0,12	0,120	0,180	0,006	0,750	0,412	1,145
0,80	TQFP-44	12,00	12,00	1,60	0,600	0,37	0,15	0,150	0,225	0,008	0,975	0,385	5,663
0,65	TSSOP-16	5,00	6,40	1,20	0,600	0,25	0,20	0,200	0,300	0,010	1,100	0,270	2,150
0,50	MSOP-10	4,90	3,00	1,10	0,550	0,22	0,18	0,180	0,270	0,009	1,000	0,238	2,130
0,40	TQFP-100	14,00	14,00	1,20	0,600	0,18	0,15	0,150	0,225	0,008	0,975	0,195	6,663
	IPC-	13510					P	roport	ional				
	NOT	ninal										· • • • •	acc
	Ive												
							A-						
							″;						

Advantages

Easy scalable

No Generic Footprints

- Also for future components
- **Smoother Assembly**
- Less Risks
- **Higher Reliability**
- **Additional Design Space**

FED Proportional Verification Projekt FED

		Period	Starting Date
1	Creation of Library Parts	3 weeks	16.05.2016
2	Design of Testboard	3 weeks	06.06.2016
3	Testboard Production	3 weeks	27.06.2016
4	Assembly of Testboard	2 weeks	11.07.2016
5	Solder Joint Inspection & Documentation	3 weeks	01.08.2016
6	Präsentation of Results at FED-Conference		15.09.2016

FED – IPC Reference Calculator

Current Sample			C Increment	tal SMD Refe	rence Cal	culator
SO-14, pitch 1.27 mm Fairchild 74ACT14SCX	277		•	K G → I		
Samples Rectangular End Cap C0201 R0201 C0402 R0402 C0603 R0603 Gull Wing Examples SO-14 Pitch 1.27	Enter Data: Emin 6,00 Emax 6,00 Etol = 0,00 Lmin 0,50 Lmax 0,90 Ltol = 0,40 bmin 0,36 bmax 0,51 btol = 0,16	Toe Goal 0,35 Heel Goal 0,35 Side Goal 0,03 Place Rnd 0,02 Size Rnd 0,01 Fab Tol +/- 0,050 Place Tol +/- 0,025	Calculation: Stol = 0,80 Stol (RMS) = 0,57 Sdiff = 0,23 Smax = 5,00 Smin = 4,20 New Smax = 4,88 New Smin = 4,32 Place Size	Toe Tol = 0,11180 Zmax = 6,81180 Heel Tol = 0,57663 Gmin = 3,60621 Side Tol = 0,19519 Yref = 0,60519 Round Factor = 50 Round Factor = 100	Result: C = 5,20 X = 1,60 Y = 0,61	Image: Non-X Toe Max 0,40 Toe Goal 0,34 Toe Goal 0,35 Heel Max 0,64 Heel Goal 0,35 Side Max 0,13 Side Min 0,03 Side Goal 0,03
SOT-23 Pitch 0.95 TQFP-44 Pitch 0.80 TSSOP-16 Pitch 0.65 MSOP-10 Pitch 0.50 TVSOP-24 Pitch 0.40	FED	Proportional S	MD Reference	Calculator		
Inward L 3216-18A 7343-31D Cylindrical MiniMelf Melf	Enter Data: Enom = 6,00 Lnom = 0,70 bnom = 0,43 cnom = 0,30 e (pitch) = 1,27	Goal Determination Toe Goal (%) 100 Heel Goal (%) 150 Side Goal (%) 5	Calculation: Z = 6,6000 G = 3,7000 Y = 0,46000		C = 5,16 C/2 = 2,58 X = 1,45 Y = 0,64	Risk observation Toe Max = 0,305 Toe Min = 0,249 Toe Goal = 0,300 Heel Max = 0,591 Heel Min = 0,303
Flat Protruded	cnom = Terminal Thickness or Height	Goals are a percentage of cnom	For Evalua	tion Purposes	Y= pitch/2 S Only	Heel Goal 0,450 Side Max 0,143 Side Min 0,045 Side Goal 0,015
TC-164	PCB Libral	ries				

Version 1.3 (Mai 2018) © 2012 - 2016 PCB Libraries, Inc. modified 23.05.2018/R. Taube

FED Verification Testboard

Testboard with Components

Group 1 – Inward L - Tantal A and D

Group 1 – In-L -Tantal A and D solder joints

P= Proportional I = IPC-7351

Group 2 – MiniMelf and Melf – solder joints

Group 3 – MLCC solder joints

Ρ

Group 4 – Resistor solder joints

Ρ

Group 5 – SO-14 solder joints – Pitch 1.27 FED____

P

Group 5 – SOT-23-6 solder joints – Pitch 0.95

D

Group 5 – QFT-44 joints – Pitch 0.8

P

Gruppe 5 – TSSOP-16 joints – Pitch 0.65

D

Group 5 – MSOP-10 joints – Pitch 0.5

Ρ

Group 5 – TVSOP-24 joints – Pitch 0.4 FED

P

Group 6 – SOT-563 und TC164 joints

D

AOI – Resistor

Joint Slope[Deg] : 54.9[Deg][>40.0[Deg]] Logic : 2D OR 3D BareCopper: 0.0%[<50.0%

0402

Joint Slope[Deg] : 61.4[Deg][>30.0[Deg]] Logic : 2D OR 3D Steep Area:94.5% [> 50.0%]

Joint Slope[Deg] : 48.0[Deg][>20.0[Deg]]

AOI- SO-14 - Pitch 1.27

AOI- TVSOP-24 - Pitch 0.4

Investigation results of Marco Huber

3. Feststellung

3. Findings

4.

The results of the investigation concerning placement and solder joints and their wetting behaviour are acceptable and fulfil the requested geometries (with little exceptions Melf) Based on the total pictures the 4 assemblies of Taube and Prettl are very similar. Also the solder joints do not show significant differences – all components are properly processed. rungen und Lötunnen Geometrien (mit

Taube sehr ähnlich. Juber verarbeitet.

ntieren und sukzessi-

ve in die Praxis, bzw. in eine "FED-Richtlinie" umzusetzen.

4. Recommendations

ONIGO I COULCE I HOULEN,

The results under 3. allows to document the accomplished pad definitions und to implement them in practical design or to publish them in a FEDguideline.

Marco Huber

Results

Requirements of IPC-A-610 Class 2 & 3 fulfilled

except Cylindrical – additional solder volume required

Acknowledgement

- Thanks to all who supported the Proportional Project, especially to
- Wolfgang Kühn for the perfect project plan
- **Olaf Hollinger**, Carl Zeiss AG in Jena for the patience designing the testboard
- **Sven Nehrdich,** Jenaer Leiterplatten for production of bare boards
- **Stefan Burmeister** and his colleagues at Prettl Electronics in Lübeck for assembly and AOI of testboards
- Marco Huber, Huber Consulting in Würenlos Switzerland for inspection of solder joints
- **Erika Reel** for continuous support of all projects which serve the FED and his members
- **Tom Hausherr,** PCBLibraries for uncountable discussions about the best landpattern design

© Copyright 2018 Rainer Taube - TAUBE ELECTRONIC GmbH

Reprint or reproduction, even partially or in modified form only allowed with permission of the Author.

Contact

TAUBE ELECTRONIC GmbH Nostitzstraße 30 D-10965 Berlin Telefon 030 69 59 25 0 e-mail: r.taube@taube-electronic.de